Optical transmission systems

Optical transmission systems are based on the transmission of light guide fiber information. Laser diodes are used as a light source, and photodetectors are used at the other end of the fiber. Optic Fiber Depending on the material used, we distinguish optical fibers made from glass and plastic, with glass being of better quality. Depending on the thickness of the light-guide core, the fibers are divided into multi-mode and single-mode. High-speed data links preferably use single-mode fibers that are more demanding for manufacturing but have a very low optical attenuation (less than 1 dB per 1 km). Optical Connectors There are several standardised types of connectors that are required for termination of the optical cable. At present, the SC/APC connector is predominant for high-speed data transmissions. The letters before of the slash indicate the mechanical design of the connector body, which can be plastic and sliding (type SC) or metal, screw type (FC type). The letters behind the slash specify how is polished contact area inside the connector, which can be either straight (PC or UPC) or sloped, angled (APC). The SC/APC connector has probably gained popularity for easy plug-in connectivity as well as suppression of light reflections on the contact surface thanks to an angle polishing. Due to the fact that mounting of optical connectors cannot be done without special tools, optical cables are often sold with already pre-installed connectors. Light sources In telecommunications, invisible infrared laser light is used as a light source. The transmitted signals can be digital, two-state (on/off), or analog, where the intensity of the light beam is continuously varied according to the input electric signal. The laser diode generates so-called coherent radiation with a single wavelength. Light output power is in units of milliwatts and is enough to “shine-through” tens of kilometers of single-mode optical fiber. Light Detectors On the opposite side of the fiber optic cable, it is necessary to convert the light information back to the electrical signal. For this purpose, photodiodes or phototransistors equipped with a suitable amplifier are used. These components, unlike laser diodes, respond to light with a wide range of wavelengths (colors). Wave multiplexes The optical cable is capable of simultaneously transmitting several beams of different wavelengths (colors). Therefore, systems using multiple light sources with different wavelengths have been developed. Light sources and so-called multiplexers/demultiplexers are produced for those standardised sets of wavelengths. The CWDM standard includes 18 wavelengths in the range of 1270 to 1610 nm (spacing 20 nm). The DWDM standard defines nearly 100 wavelengths near the wavelength of 1550 nm. Optical splitters The light beam can be divided into several directions. Although it weakens somewhat, it is possible to serve a larger number of terminals from common center. Splitters are available with split ratios 1:2, 1:4, 1:8, 1:16, 1:32 etc. For use in wavelength multiplexed systems it is important to choose wideband devices – must be able to split all the wavelengths used. This requirement is met by PLC splitters. EMP-Centauri Optical Systems Furthermore, up to 16 satellite polarization channels are added to the optical fiber data transmissions, with one channel simultaneously transmitting the terrestrial band. An optical transmitter converts signals from the LNB into individual light beams that are merged into a common output by the multiplexer. The optical receiver first splits all wavelengths into individual photodetectors that convert the light beam back to the electrical signal. The coaxial outputs of the receiver will provide a accurate copy of the signals coming from the LNB into the optical transmitter.Článek Optical transmission systems se nejdříve objevil na EMP-Centauri.

projít na článek

Advanced position encoders in photolithography

Optical lithography has been widely used in the semiconductor industry and many other nanotechnology applications. High-throughput machines are required that keep pace with the demand for ever-decreasing device dimensions. Optical position encoders are co

projít na článek

Optical encoders and LiDAR scanning

Many of the world’s leading LiDAR (Light Detection and Ranging) manufacturers have developed vehicular LiDAR laser scanning systems, with Renishaw’s high-performance optical encoders onboard, to provide precise and accurate co-ordinate measurement data fo

projít na článek

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts

Founded in 1839, Boston University has over 33,000 students. The Department of Electrical and Computer Engineering houses the Optical Characterization and Nanophotonics (OCN) laboratory. Here, research focuses on developing, and applying, advanced optical

projít na článek

NCi-E

The NCi-E interface is used with Renishaw's NC4 non-contact tool setting systems. It processes signals from the non-contact unit and converts them into voltage-free solid state relay (SSR) outputs, for transmission to the CNC machine control.

projít na článek

An introduction to encoder systems

Are you looking to find out more about optical encoders and to understand the terminology used? This webinar explores in simple terms what an encoder does.

projít na článek